ON THE NON-HOMOGENEOUS BINARY QUADRATIC EQUATION

$$
x^{2}-3 x y+y^{2}+2 x=0
$$

M.A.Gopalan ${ }^{*}$

S. Vidhyalakshmi*

E.Premalatha*

Abstract

The Binary quadratic equation given by $x^{2}-3 x y+y^{2}+2 x=0$ is analyzed for its patterns of non - zero distinct integral solutions. A few interesting relations among the solutions are exhibited.

KEY WORDS

Binary Quadratic equation, Integral solutions
M.SC 2000 mathematics subject classification: 11D09

[^0]
INTRODUCTION

Binary quadratic diophantine equation offers an unlimited field for research because of their variety [1-4]. In the context one may refer [5-23]. This communication concerns with yet another interesting binary quadratic equation $x^{2}-3 x y+y^{2}+2 x=0$ for determining its infinitely many non zero integral solutions.Also a few interesting relations among the solutions have been presented.

METHOD OF ANALYSIS

The diophantine equation representing the binary quadratic equation under consideration is

$$
\begin{equation*}
x^{2}-3 x y+y^{2}+2 x=0 \tag{1}
\end{equation*}
$$

Different patterns of solutions of (1) are Presented below.

Pattern-1

The substitution of the linear transformations

$$
\begin{equation*}
\mathrm{x}=\frac{2}{5}[3 \alpha+5 \mathrm{~T}+2], \quad \mathrm{y}=\frac{2}{5}[2 \alpha+3] \tag{2}
\end{equation*}
$$

in (1) leads to $\quad \alpha^{2}=5 \mathrm{~T}^{2}+1$
whose general solution $\left(\alpha_{n}, T_{n}\right)$ is

$$
\begin{aligned}
& \alpha_{\mathrm{n}}=\frac{1}{2}\left[(9+4 \sqrt{5})^{\mathrm{n}+1}+(9-4 \sqrt{5})^{\mathrm{n}+1}\right] \\
& \mathrm{T}_{\mathrm{n}}=\frac{1}{2 \sqrt{5}}\left[(9+4 \sqrt{5})^{\mathrm{n}+1}-(9-4 \sqrt{5})^{\mathrm{n}+1}\right]
\end{aligned}
$$

In view of (2), the corresponding non-zero integral solutions of (1) are given by

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=\frac{1}{5}\left[3 \mathrm{f}_{\mathrm{n}}+\sqrt{5} \mathrm{~g}_{\mathrm{n}}+4\right] \\
& \mathrm{y}_{\mathrm{n}}=\frac{1}{5}\left[2 \mathrm{f}_{\mathrm{n}}+6\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{n}=(9+4 \sqrt{5})^{2 n+2}+(9-4 \sqrt{5})^{2 n+2} \\
& g_{n}=(9+4 \sqrt{5})^{2 n+2}-(9-4 \sqrt{5})^{2 n+2}
\end{aligned}
$$

A few interesting properties observed are as follows:

1. For all values of $\mathrm{n}, \mathrm{x}_{\mathrm{n}}$ and y_{n} are even
2. $5\left[\mathrm{x}_{\mathrm{n}+2}-322 \mathrm{x}_{\mathrm{n}+1}+\mathrm{x}_{\mathrm{n}}\right]+1280=0$
3. $5\left[y_{n+2}-322 y_{n+1}+y_{n}\right]+1980=0$
4. $5\left[377 \mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}+1}\right] \equiv 0(\bmod 32)$
5. $1885 \mathrm{x}_{\mathrm{n}}-5 \mathrm{x}_{\mathrm{n}+1}-144\left\{1610 \mathrm{y}_{\mathrm{n}+1}-5 \mathrm{y}_{\mathrm{n}+2}-1926\right\} \equiv 0(\bmod 1504)$
6. $1610 \mathrm{y}_{\mathrm{n}+1}-5 \mathrm{y}_{\mathrm{n}+2} \equiv 0(\bmod 2)$
7. $144 \mathrm{x}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}+1} \equiv 4(\bmod 22)$
8. $10 \mathrm{x}_{\mathrm{n}+1}-3770 \mathrm{x}_{\mathrm{n}}+1440 \mathrm{y}_{\mathrm{n}}+1280=0$
9. $720 \mathrm{x}_{\mathrm{n}}-275 \mathrm{y}_{\mathrm{n}}-240=5 \mathrm{y}_{\mathrm{n}+1}$
10. Each of the following represents a nasty number

- $15\left\{377 \mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}+1}\right\}-2784$
- $4830 \mathrm{y}_{\mathrm{n}+1}-15 \mathrm{y}_{\mathrm{n}+2}-5766$
- $33\left\{144 x_{n}-y_{n+1}-70\right\}$

11. Each of the following represents is a cubical integer.

- $4\left\{5 y_{3 n+2}+15 y_{n}-24\right\}$
- $20 y_{3 n+2}+19320 y_{n+1}-60 y_{n+2}-23136$

Pattern-2

Treating (1) as Quadratic in x , we have

$$
\begin{equation*}
x=\frac{1}{2}\left[3 y \pm \sqrt{5 y^{2}-12 y+4}\right] \tag{4}
\end{equation*}
$$

Let $\alpha^{2}=5 y^{2}-12 y+4$
which can be written as $\quad \mathrm{Y}^{2}=5 \alpha^{2}+16$
where $Y=(5 y-6)^{2}$
and whose general solution $\left(\mathrm{Y}_{\mathrm{n}}, \alpha_{\mathrm{n}}\right)$ is

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{n}} & =3 \mathrm{f}_{\mathrm{n}}+\sqrt{5} \mathrm{~g}_{\mathrm{n}} \\
\mathrm{~T}_{\mathrm{n}} & =\mathrm{f}_{\mathrm{n}}+\frac{3}{5} \sqrt{5} \mathrm{~g}_{\mathrm{n}}
\end{aligned} \quad, \mathrm{n}=0,1,2, \ldots
$$

in which

$$
\begin{aligned}
& f_{n}=(9+4 \sqrt{5})^{2 n+1}+(9-4 \sqrt{5})^{2 n+1} \\
& g_{n}=(9+4 \sqrt{5})^{2 n+1}-(9-4 \sqrt{5})^{2 n+1}
\end{aligned}
$$

In view of (6) and (4), the corresponding non-zero integral solutions of (1) are given by

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}}=\frac{9}{10} \mathrm{f}_{\mathrm{n}}+\frac{3}{2 \sqrt{5}} \mathrm{~g}_{\mathrm{n}} \pm\left[\frac{\mathrm{f}_{\mathrm{n}}}{2}+\frac{3}{2 \sqrt{5}} \mathrm{~g}_{\mathrm{n}}\right]+\frac{4}{5} \\
& \mathrm{y}_{\mathrm{n}}=\frac{1}{5}\left[3 \mathrm{f}_{\mathrm{n}}+\sqrt{5} \mathrm{~g}_{\mathrm{n}}+6\right]
\end{aligned}
$$

A few interesting properties observed are as follows

1. $5\left[\mathrm{x}_{\mathrm{n}+2}-644 \mathrm{x}_{\mathrm{n}+1}+4 \mathrm{x}_{\mathrm{n}}\right]+2556=0$
2. $5 \mathrm{y}_{\mathrm{n}+2}-3220 \mathrm{y}_{\mathrm{n}+1}+20 \mathrm{y}_{\mathrm{n}}+3834=0$
3. $5\left[3 y_{n}-x_{n}\right] \equiv 14\left(\bmod 2 f_{n}\right)$
4. $5 \mathrm{x}_{\mathrm{n}+1}-1440 \mathrm{y}_{\mathrm{n}}+550 \mathrm{x}_{\mathrm{n}}+1284=0$
5. $5 \mathrm{y}_{\mathrm{n}+1}+1440 \mathrm{x}_{\mathrm{n}}+3366=3770 \mathrm{y}_{\mathrm{n}}$
6. $4\left\{15 \mathrm{y}_{3 n+1}-5 x_{3 n+1}+45 y_{n}-15 x_{n}-56\right\}$ is a cubical integer.

CONCLUSION:

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCE:

1. Dickson.L.E., History of Theory of numbers, vol.2:Diophantine Analysis, New York, Dover, 2005.
2. Mordell L.J., Diophantine Equations, Academic press, London (1969).
3. Andre weil, Number theory: An approach through history from hammurapi to legendre/Andre weil:Boston (Birkahasuser boston), 1983.
4. Nigel P.Smart , The algorithmic Resolutions of Diophantine equations,Cambridge University press, 1999.
5. Li Feng, Pingzhi yuan, Yongzhong Hu , On the Diophantine Equation $X^{2}-k X Y+Y^{2}+L X=0$, Integers, Vol 13,1-8, 2013.
6. Gopalan M.A., S.Devibala , and R.Anbuselvi., A Remarkable Observations on $x^{2}+x y+y^{2}=N$, Acta Ciencia Indica, Vol XXXI M, No. 4,997-998, (2005).
7. Gopalan M.A., and R.Anbuselvi, Intrgral Solutions of $x^{2}+p x y+y^{2}=N$ Proc.Nat.Acad.Sci.India, 77(A), III, 225-257, 2007.
8. Gopalan M.A., S.Vidyalakshmi and S.Devibala, On the Diophantine equation $3 x^{2}+x y=14$, Acta Ciencia Indica, Vol XXXIII M, No.2,645-646,2007.
9. Gopalan M.A., R.Anbuselvi. and S.Devibala, Intrgral Solutions of $a\left(x^{2}-k x+1\right)-b\left(y^{2}-k y+1\right)=0$, Impact.J.Sci.Tech,Vol 1(2),35-40,2007.
10. Gopalan M.A and R.Anbuselvi., On the Diophantine equation $x^{2}+b x y+c y^{2}=1$, Acta Ciencia Indica, Vol XXXIII M, No. 4,1785-1787, (2007).
11. Gopalan M.A and V.Pandichelvi., Intrgral Solutions of $x y-2(x+y)=x^{2}-y^{2}$, Acta Ciencia Indica, Vol XXXV M, No.1,17-21,2009.
12. Gopalan M.A and S.Vidyalakshmi., Observations on Intrgral Solutions of $y^{2}=5 x^{2}+1$ Impact.J.Sci.Tech,Vol (4),125-129,2010.
13. Gopalan M.A and Sivakami, Observations on Intrgral Solutions of $y^{2}=7 x^{2}+1$, Antarctica J.Math,7(3),291-296,2010.
14. Gopalan M.A and G.Parvathy, Integral points on the hyperbola $x^{2}+4 x y+y^{2}-2 x-10 y+24=0$, Antarctica J.Math, 7(2), 149-155, 2010.
15. Gopalan M.A and S.Vidyalakshmi., Special Pythagorean triangles generated through the intrgral Solutions of the equation $y^{2}=\left(K^{2}+1\right) x^{2}+1$, Antarctica J.Math, 7(5), 503507,2010.
16. Gopalan M.A., and G.Sangeetha, Remarkable Observations on $y^{2}=10 x^{2}+1$, Impact.J.Sci.Tech,Vol 4,103-106,2010.
17. Gopalan M.A., and R.S.Yamuna, Remarkable Observations on the Binary quadratic equation $y^{2}=\left(k^{2}+2\right) x^{2}+1$, , Impact.J.Sci.Tech,Vol 4(4),61-65,2010.
18. Gopalan M.A and G.Srividhya, Relations among M—geral numbers through the equation $y^{2}=2 x^{2}-1$, Antarctica J.Math, 7(3),363-369,2010.
19. Manju Somanath, G.Sangeetha and M.A.Goplanan,Relations among special figuarate numbers through the equation $y^{2}=10 x^{2}+1$ Impact.J.Sci.Tech,Vol 5(1),57-60,2011.
20. Gopalan M.A and R.Palanikumar, Observations on $y^{2}=12 x^{2}+1$, Antarctica J.Math, 8(2),149-152,2011.
21. Gopalan M.A andA.Vijayasankar, Intrgral Solutions of $y^{2}=\left(k^{2}+1\right) x^{2}-1$, Antarctica J.Math, 8(6),465-468,2011.
22. Gopalan M.A, S.Vidyalakshmi, T.R.Usha Rani and S.Mallika, Observations on $y^{2}=12 x^{2}-3$,Bessel J.Math,2(3),153-158,2012.
23. Gopalan M.A, S.Vidyalakshmi, G.Sumathi and K.Lakshmi, Integral points on the hyperbola $x^{2}+6 x y+y^{2}+40 x+8 y+40=0$,Bessel J.Math,2(3),159-164,2012.

[^0]: * Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli - 620002.

